GEOMETRY

Definitions-Properties-Postulates-Theorems

Definitions

Collinear set of points:	A set of points all of which lie on the same line.
Non-collinear set of points:	A set of 3 or more points that do not all lie on the same line.
-	
Line segment:	A set of points consisting of two points on a line (the endpoints) and all the
	points between.
Midsegment of a triangle	A segment having endpoints that are the midpoints of two sides of a triangle.
*Midpoint of a segment:	The point of that line segment that divides the segment into 2 congruent segments.
*Bisector of a segment:	Any line that intersects the segment at its midpoint.
Ray:	Part of line that consists of a point on the line, called the endpoint, and all the
Ruy.	points on one side of the endpoint.
Opposite rays:	Two rays of the same line with a common endpoint and no other point in
Opposite rays.	common.
Angle	
Angle:	A set of points that is the union of 2 rays having the same endpoint.
Straight angle:	An angle that is the union of opposite rays. Its measure is 180 degrees.
*Right angle:	An angle whose measure is 90 degrees.
Acute angle:	An angle whose measure is less than 90 degrees.
Obtuse angle:	An angle whose measure is greater than 90 degrees but less that 180 degrees.
*Congruent:	Equal measures
Angle bisector:	A ray whose endpoint is the vertex of the angle, and that divides the angle into
	2 congruent angles.
Adjacent angles:	2 angles that have a common vertex and a common side but no interior points
	in common
Vertical angles:	2 angles in which the sides of one angle are opposite rays to the sides of the
	other.
*Complementary angles	2 angles whose measures sum to 90 degrees.
*Supplementary angles	2 angles whose measures sum to 180 degrees.
*Linear Pair	2 adjacent angles whose sum is a straight angle
*Perpendicular lines:	2 lines that intersect to form right angles
*Perpendicular bisector:	A line, segment or ray that is perpendicular to a line segment and bisects the
_	line segment
Types of triangles:	
*Scalene triangle	A triangle that has no congruent sides
*Isosceles triangle	A triangle that has 2 congruent sides
*Equilateral triangle	A triangle that has 3 congruent sides
*Acute triangle	A triangle that has 3 acute angles
*Equiangular	A triangle that has 3 congruent angles
*Right triangle	A triangle that has a right angle
*Obtuse triangle	A triangle that has an obtuse angle
*Altitude of a triangle:	A line segment drawn from any vertex of the triangle that is perpendicular to
	and ending in the line that contains the opposite side.
*Median of a triangle:	A line segment drawn from any vertex of the triangle to the midpoint of the
incommon a triangle.	opposite side.
	opposite side.

```
GEOMETRY
```

Properties and Postulates (accepted as true without proof)

	(decepted as tide without proof)
*Addition Property:	If $a = b$, then $a + c = b + c$
	You can add the same amount to both sides of an equation
*Subtraction Property:	If $a = b$, then $a - c = b - c$
	You can subtract the same amount from both sides of an equation
*Multiplication Property:	If $a = b$, then $agc = bgc$
	You can multiply both sides of an equation by the same amount
*Division Property:	If $a = b$, then $a \div c = b \div c$ or $\frac{a}{c} = \frac{b}{c}$, $(c \ne 0)$
Division roperty.	If $u = b$, then $u \neq c = b \neq c$ of ${-}$, $(c \neq 0)$
	You can divide both sides of an equation by the same amount as long
	as the amount is not zero (can't divide by zeroits against the law!)
*Substitution Property:	If $a = b$, then b can replace a in any expression
Distributive Property:	a(b+c) = ab + ac
*Partition Postulate:	A whole is equal to the sum of its parts.
*Reflexive Property:	$\overline{AB} \cong \overline{AB}$
	Any object is congruent to itself
Symmetric Property:	If $\angle A \cong \angle B$ then $\angle B \cong \angle A$
	A congruence can be expressed in either order
*Transitive Property:	If $\angle A \cong \angle B$ and $\angle B \cong \angle C$ then $\angle A \cong \angle C$
	If quantities are \cong to the same quantity, then they are \cong to each other.
*Postulate of Contradiction	If two statements are contradictory, and one is based on an assumption,
	then the assumption must be false.
*Postulate of Elimination	If one of a series of propositions must be true, and you have can prove
	all but one false, then the remaining proposition must be true.

Angle Theorems (Statements whose truth has been proven)

*Right angles are congruent.

*Vertical angles are congruent.

Complements of the same angle are congruent.

Congruent supplements are right angles.

If 2 angles are congruent, then their complements are congruent.

If 2 angles are supplements of the same angle, then they are congruent.

If 2 angles are congruent, then their supplements are congruent.

If 2 angles form a linear pair, then they are supplementary.

If 2 parallel lines are cut by a transversal, the corresponding angles are congruent (and conversely).

If 2 parallel lines are cut by a transversal, the alternate interior angles are congruent (and conversely).

If 2 parallel lines are cut by a transversal, the same side interior angles are supplementary (and conversely).

Triangle Theorems:

*The sum of the measures of the angles of a triangle is 180 degrees. The largest side of a triangle lies opposite the largest angle (and conversely). The sum of the measures of any two sides of a triangle is greater than the measure of the 3rd side. *If a triangle is isosceles, then the base angles are congruent (and conversely). The midsegment of a triangle is parallel to one side of a triangle and it equal to half its length. If a triangle is a right triangle, then the acute angles are complementary. If a triangle is a right triangle, then the sum of the squares of the legs equals the square of the hypotenuse.

Parallelogram Theorems:

A diagonal divides a parallelogram into 2 congruent triangles Opposite sides of a parallelogram are congruent Opposite angles of a parallelogram are congruent Consecutive angles of a parallelogram are supplementary Diagonals of a parallelogram bisect each other

Misc/New Theorems:

All radii in a given circle are congruent.

The sum of the interior angles of an *n*-sided polygon is (n-2)180.

The sum of the exterior angles of a polygon is 360.