GEOMETRY

Definitions-Properties-Postulates-Theorems

Definitions

Collinear set of points:
Non-collinear set of points
Line segment:
Midsegment of a triangle
*Midpoint of a segment:
*Bisector of a segment:
Ray:
Opposite rays:
Angle:
Straight angle:
*Right angle:
Acute angle:
Obtuse angle:
*Congruent:
Angle bisector:
Adjacent angles:
Vertical angles:
*Complementary angles
*Supplementary angles
*Linear Pair
*Perpendicular lines:
*Perpendicular bisector:
Types of triangles:
*Scalene triangle
*Isosceles triangle
*Equilateral triangle
*Acute triangle
*Equiangular
*Right triangle
*Obtuse triangle
*Altitude of a triangle:
*Median of a triangle:

A set of points all of which lie on the same line.
A set of 3 or more points that do not all lie on the same line.
A set of points consisting of two points on a line (the endpoints) and all the points between.
A segment having endpoints that are the midpoints of two sides of a triangle.
The point of that line segment that divides the segment into 2 congruent segments.
Any line that intersects the segment at its midpoint.
Part of line that consists of a point on the line, called the endpoint, and all the points on one side of the endpoint.
Two rays of the same line with a common endpoint and no other point in common.
A set of points that is the union of 2 rays having the same endpoint.
An angle that is the union of opposite rays. Its measure is 180 degrees.
An angle whose measure is 90 degrees.
An angle whose measure is less than 90 degrees.
An angle whose measure is greater than 90 degrees but less that 180 degrees.
Equal measures
A ray whose endpoint is the vertex of the angle, and that divides the angle into 2 congruent angles.
2 angles that have a common vertex and a common side but no interior points in common
2 angles in which the sides of one angle are opposite rays to the sides of the other.
2 angles whose measures sum to 90 degrees.
2 angles whose measures sum to 180 degrees.
2 adjacent angles whose sum is a straight angle
2 lines that intersect to form right angles
A line, segment or ray that is perpendicular to a line segment and bisects the line segment

A triangle that has no congruent sides
A triangle that has 2 congruent sides
A triangle that has 3 congruent sides
A triangle that has 3 acute angles
A triangle that has 3 congruent angles
A triangle that has a right angle
A triangle that has an obtuse angle
A line segment drawn from any vertex of the triangle that is perpendicular to and ending in the line that contains the opposite side.
A line segment drawn from any vertex of the triangle to the midpoint of the opposite side.

GEOMETRY

Properties and Postulates (accepted as true without proof)

*Addition Property:	If $a=b$, then $a+c=b+c$
	You can add the same amount to both sides of an equation
*Subtraction Property:	If $a=b$, then $a-c=b-c$
	You can subtract the same amount from both sides of an equation
*Multiplication Property:	If $a=b$, then $a \mathrm{gc}=\mathrm{c}^{\text {c }}$ c
	You can multiply both sides of an equation by the same amount
*Division Property:	If $a=b$, then $a \div c=b \div c$ or $\frac{a}{c}=\frac{b}{c},(c \neq 0)$
	You can divide both sides of an equation by the same amount as long as the amount is not zero (can't divide by zero ...its against the law!)
*Substitution Property:	If $a=b$, then b can replace a in any expression
Distributive Property:	$a(b+c)=a b+a c$
*Partition Postulate:	A whole is equal to the sum of its parts.
*Reflexive Property:	$\overline{A B} \cong \overline{A B}$
	Any object is congruent to itself
Symmetric Property:	If $\angle A \cong \angle B$ then $\angle B \cong \angle A$
	A congruence can be expressed in either order
*Transitive Property:	If $\angle A \cong \angle B$ and $\angle B \cong \angle C$ then $\angle A \cong \angle C$
	If quantities are \cong to the same quantity, then they are \cong to each other.
*Postulate of Contradiction	If two statements are contradictory, and one is based on an assumption, then the assumption must be false.
*Postulate of Elimination	If one of a series of propositions must be true, and you have can prove all but one false, then the remaining proposition must be true.

Angle Theorems (Statements whose truth has been proven)

*Right angles are congruent.
*Vertical angles are congruent.
Complements of the same angle are congruent.
Congruent supplements are right angles.
If 2 angles are congruent, then their complements are congruent.
If 2 angles are supplements of the same angle, then they are congruent.
If 2 angles are congruent, then their supplements are congruent.
If 2 angles form a linear pair, then they are supplementary.
If 2 parallel lines are cut by a transversal, the corresponding angles are congruent (and conversely).
If 2 parallel lines are cut by a transversal, the alternate interior angles are congruent (and conversely).
If 2 parallel lines are cut by a transversal, the same side interior angles are supplementary (and conversely).

Ms. Phillips

GEOMETRY

Triangle Theorems:

*The sum of the measures of the angles of a triangle is 180 degrees.
The largest side of a triangle lies opposite the largest angle (and conversely).
The sum of the measures of any two sides of a triangle is greater than the measure of the $3^{\text {rd }}$ side.
*If a triangle is isosceles, then the base angles are congruent (and conversely).
The midsegment of a triangle is parallel to one side of a triangle and it equal to half its length.
If a triangle is a right triangle, then the acute angles are complementary.
If a triangle is a right triangle, then the sum of the squares of the legs equals the square of the hypotenuse.

Parallelogram Theorems:

A diagonal divides a parallelogram into 2 congruent triangles
Opposite sides of a parallelogram are congruent
Opposite angles of a parallelogram are congruent
Consecutive angles of a parallelogram are supplementary
Diagonals of a parallelogram bisect each other

Misc/New Theorems:

All radii in a given circle are congruent.
The sum of the interior angles of an n-sided polygon is $(n-2) 180$.
The sum of the exterior angles of a polygon is 360 .

